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A quasisteady method is presented where the results of steady computational fluid dynamics (CFD) calculations
are used to obtain generalized aerodynamic forces for flutter analysis. For high-speed flows, the method provides
a bridge between the computational efficiency, but relative, inaccuracies of piston theory and the greater
accuracy, but high, computational cost of CFD flutter calculations. The method uses the structure's vibratory
modes to modify the boundary conditions in the steady CFD calculations. Two steady CFD solutions are required
per vibratory mode: one for the static part and one for the harmonic part of the pressure distribution. The
pressure distributions of these solutions can be used to compute generalized aerodynamic forces necessary for
flutter analysis. Sample two- and three-dimensional aerodynamic force calculations are provided demonstrating
the method, and a flutter analysis of a National Aerospace Plane type wing is also discussed.

Nomenclature
A() = matrix of coefficients related to the static part of

the generalized aerodynamic forces
A, = matrix of coefficients related to the harmonic

part of generalized aerodynamic forces
b = wing semichord
Cp = pressure coefficient, (p - px)/q
d = arbitrary scale factor, q^lV^
k = reduced frequency, a)b/Vx
p = pressure
q = dynamic pressure, ip^VJ
qj = yth generalized coordinate
qj = arbitrary scale factor used in calculation of static

pressures for yth mode
4y = arbitrary scale factor used in calculation of

harmonic pressures for yth mode
Sj = surface grid contour deformed into yth mode

shape
S = surface grid contour
t = time
V = velocity
Ws = steady-state mass flux vector
w = downwash
x = x coordinate, origin at leading-edge root, positive

aft
y = y coordinate, origin at leading-edge root, positive

spanwise
Z = vertical deformation of surface
Z() j = complex amplitude of yth mode
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z = z coordinate, origin at leading-edge root,
positive up

a = angle of attack
p = density
a = real part of eigenvalue
</>j = yth mode shape function
<l>j = yth integrated mode shape function for

calculating harmonic pressures
(0 — circular frequency

Subscripts
le = value of quantity at leading edge of wing or

vehicle
lower = value of quantity on lower surface of wing or

vehicle
ss = steady state or static aeroelastic value of quantity
te = value of quantity at trailing edge of wing or

vehicle
upper = value of quantity on upper surface of wing or

vehicle
3° = freestream value of quantity

Superscripts
I = harmonic part of quantity
R = static part of quantity

Introduction

T HE National Aerospace Plane (NASP) vehicle in its as-
cent trajectory will be required to fly through an extraor-

dinary range of Mach number conditions. Presently, reliable
and accurate linear lifting surface theory codes exist for pre-
dicting unsteady aerodynamic forces and performing flutter
analyses for general configurations at subsonic Mach numbers
and low supersonic Mach numbers. For Mach numbers above
3.0, methods such as piston theory1 and Newtonian impact
theory2 have been used to predict the unsteady aerodynamic
forces. However, at the higher Mach numbers the validity of
these methods becomes questionable.

Piston theory and Newtonian impact theory are both based
on the assumption that the flow is a point function, i.e., the
pressures are only dependent upon the local conditions. The
validity of these methods is an issue involving both the speed
range and the complexity of the vehicle geometry. For piston
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theory to be valid, it is necessary to have a narrow flow region
between the aerodynamic surface and the shock imparted by
the surface's leading edge. For Newtonian impact theory to
be valid it is necessary that the shock envelope the aerody-
namic surface. However, the locations of these regions can
change as a result of changes in speed or vehicle angle of
attack. In addition, an aspect of the aerodynamics that is
totally disregarded by both of these theories is the interaction
between, and the edge effects of, the various aerodynamic
surfaces. Also not modeled are viscous, static gas, and ioni-
zation effects that may occur at very high Mach numbers.

Unsteady CFD may be used for flutter calculations provid-
ing improved accuracy over piston and Newtonian impact
theories. The unsteady CFD calculations required to deter-
mine a flutter point are computationally expensive. Steady
CFD solutions, on the other hand, are easier to obtain and
generally require at least an order of magnitude less com-
putation time. This article describes a quasisteady approach
for using steady CFD calculations to estimate the unsteady
aerodynamic forces necessary for flutter calculations. The ap-
proach uses two separate CFD solutions per vibratory mode:
one solution for the static part of the pressures and another
for the harmonic part of the pressures. These pressures are
then used to calculate the generalized aerodynamic force (GAF)
matrices that can be used in a conventional flutter analysis.

This article is divided into two main sections. The first
section describes the quasisteady CFD method and presents
sample two- and three-dimensional aerodynamic calculations.
The second section discusses flutter analyses of a high-speed
wing at several Mach numbers. The sample quasisteady CFD
calculations will be compared with unsteady CFD calculations
where available, and all of the results will be compared with
piston theory results. The CFD flow solver used in this study
was CFL3D.3

Description of Quasisteady CFD Method
The quasisteady CFD method requires two key assump-

tions: 1) the flow is quasisteady and 2) the perturbations of
the aerodynamic surfaces are small enough that superposition
is valid. A flow is said to be quasisteady when the reduced
frequency is small (A: « 1). This condition occurs if the
frequencies are very low, the vehicle semichord is very small,
or the velocity is very high. In hypersonic and high supersonic
flows, the velocity is very high. The assumption of quasisteady
flow is a great advantage when performing aerodynamic cal-
culations because the aerodynamic loads are linearly related
to the motion. The small perturbation assumption allows the
total motion of the vehicle to be modeled using generalized
coordinates and mode superposition analysis. These assump-
tions allow the use of steady CFD solutions to approximate
unsteady generalized aerodynamic forces for flutter analysis.

The aerodynamic calculations require the use of the down-
wash boundary condition for each mode. The downwash for
the yth mode is shown in Eq. (1):

d(t):

(1)

This downwash boundary condition is used to solve for the
pressure distribution for each mode, &Cpj(x, y, t). The GAFs
can then be calculated as shown in Eq. (2):

(2)

(3)

GAF,/0 = q

The GAFs have the form

GAF,y(0 = qA,Viq,(i)

It is not necessary to assume harmonic motion in the deri-
vation of the quasisteady GAFs, but to be consistent with
definitions used for linear unsteady aerodynamics, AQ will be
referred to as the static part and A l will be referred to as the
harmonic part. Using Eq. (3) and the corresponding gener-
alized mass, damping, and stiffness terms, the aeroelastic
equations of motion in state-space form can be formulated
an a flutter analysis performed. The next section will describe
how to impose the proper boundary conditions in the CFD
problem and obtain these matrices.

Application of Quasisteady Boundary Conditions
The quasisteady CFD method requires only steady CFD

solutions in which special boundary conditions are used to
provide the appropriate pressure distributions for calculating
the GAF matrices. To obtain the individual parts of the GAF
matrices, two steady-state pressure mode solutions are re-
quired per vibratory mode. One solution provides the static
part of the pressure, while the other solution provides the
harmonic part of the pressure. Only one method is discussed
for obtaining the static part; however, two methods are pro-
posed for the harmonic part.

Flutter calculations require only the pressures due to the
perturbation motion about the static aeroelastic solution. For
linear aerodynamic methods the generalized forces are in-
dependent of the static aeroelastic solution and the static
aeroelastic solution can be ignored. For aerodynamic methods
that capture nonlinear effects, the generalized forces will, in
general, be a function of the static aeroelastic solution. Thus,
perturbations to the CFD boundary conditions for calculating
the generalized aerodynamic forces will be made about the
static aeroelastic solution and the pressure differential attrib-
uted to the static aeroelastic solution (ACpss) will be removed
from the resulting pressures prior to calculating the GAF
matrices. Assuming only vertical modal deformation, the gen-
eral vehicle shape is shown in Eq. (4) as a summation of the
vertical displacement perturbation and the static aeroelastic
shape:

S(x, y, z, 0 = Z(x, y, t) + Sss(*, y, z) (4)

In the formulation shown in Eq. (4) the steady-state pressure
differential AC/PSS is the pressure distribution obtained from
the CFD calculation where the shape is defined by 5SS. In the
formulations that follow the static aeroelastic pressure dif-
ferential (ACpss) will be removed from the pressures prior to
calculating the GAF matrices.

Static Part
To calculate the static part of the pressures, the grid ge-

ometry for the static aeroelastic shape is perturbed to in-
corporate individual mode shape deflections. The boundary
condition imposed by additively deforming the unperturbed
steady-state surface grid geometry into the yth mode shape is

S j ( x , y , z ) = (5)

where q} is the value of the modal scale factor used to scale
the mode shape deformation by an arbitrarily small amount
and Sj is a function that describes the contour of the deflected
structure for a small perturbation of the yth mode.

Using the deformed grid for mode j defined by Sj in Eq.
(5), the pressures for a given Mach number are calculated
using the CFD code. These pressures are then used to cal-
culate the static part of the pressure differential for the yth
mode, where

AC"/*, y) = (C,,^t(x, y, ft - C^Jx, y, <?,)] -
(6)
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After calculating AC* for all of the modes, the AQ matrix can
be calculated as shown in Eq. (7):

= I f f
CJ, J ./are

AC*(r, dy (7)

Note that the scale factor value gy is included in Eq. (7) so
that the product of AC* and l/gy provides the pressure differ-
ential per unit generalized coordinate for the ;th mode.
Harmonic Part

Two methods of providing the boundary conditions nec-
essary for calculating the harmonic part of the GAP matrices
are considered. One method is similar to the method de-
scribed for the static part, where the grid is deformed to
provide the boundary condition. The other method uses the
static aeroelastic grid Sss, but requires that a transpiration
velocity be applied to the surface of the body. Both of these
approaches are presented here.

Integration boundary condition. The harmonic part of the
pressure is generated by the motion of the wing itself. Gen-
erally, most steady CFD codes require the flow tangency con-
dition as the boundary condition quantified by

W-VS = 0 (8)

where VS is the surface gradient representing a surface nor-
mal. Because this relationship is built into most CFD codes,
to represent the flow tangency boundary condition it is nec-
essary to appropriately modify the mode shape deflections to
approximate the harmonic part of the boundary condition.

Equation (1) provides a way of obtaining the appropriate
relationship for modifying the mode shapes. As described in
Ref. 4 to obtain a grid shape that provides the same boundary
condition as the vehicle motion provides, the downwash is set
to zero. For the yth mode the relationship becomes

(9)

By redefining the generalized coordinate as qt and redefining
the left-hand mode shape function as </>,, Eq. (9) becomes

Calculation of harmonic GAP. Using either the integra-
tion or transpiration boundary conditions and the CFD flow
solver the pressure differential for each mode becomes a func-
tion of d as shown in Eq. (14):

(14)

After calculating AC£ for each mode the Al matrix can be
calculated as follows:

11 = d J Jarea
A —
•'i 1 77 AC'(*, y)*, dx dy (15)

Sample Calculations in Two Dimensions
This subsection provides sample quasisteady CFD calcu-

lations of the static and harmonic parts of the aerodynamic
forces for a two-dimensional airfoil using the quasisteady CFD
(QSCFD) method. Two alternative methods of computing
these forces are shown for comparison. One method is to
perform unsteady CFD calculations at a low reduced fre-
quency to obtain the aerodynamic forces. The other method
is to calculate the aerodynamic forces using piston theory.
The mode shape considered was rigid pitching of an airfoil
about its leading edge.

While ACpss is in general nonzero, the examples discussed
in this article are symmetrical airfoil sections at zero angle of
attack. Consequently, the steady-state shape is equal to the
undeformed shape and ACpss is zero.

The 153 x 41 computational grid used in the two-dimen-
sional CFD calculations is shown in Fig. 1. The airfoil section
is 4% thick and representative of current NASP designs. This
grid was used for the unsteady CFD calculations and deformed
as necessary for the quasisteady CFD calculations.

The quasisteady CFD method was performed for Mach
numbers of 5, 10, and 15. For the static part, the airfoil was
deformed into the pitching mode shape. Since the mode shape
is rigid pitching, the calculations need only be performed with
the grid at an angle of attack. The calculations were performed
with an angle of attack of 1 deg with respect to the far-field
flow. This 1-deg deflection was considered to fall within the

, -

- = -^ </>,(*, 3% (10)

Integrating both sides of Eq. (10) in the x direction gives the
equivalent deformed shape. For a wing this method is imple-
mented by integrating from the leading edge to the trailing
edge for each span wise station:

(11)

The surface computational grid is then deformed by the in-
tegrated mode shape as

$j(x, y, z) = ^(x, y) + Sss(*, y, z) (12)

Transpiration boundary condition. A transpiration
boundary condition is another approach for calculating the
harmonic part of the pressures. Since the procedure for de-
forming the grid can be very time consuming, especially for
complicated configurations, a benefit of this method is that
the surface grid does not need to be deformed into the in-
tegrated mode shapes. In the present implementation of the
method, the transpiration boundary condition is added to the
other boundary conditions as input to the CFD code. The
downwash velocity on the surface of the body becomes

Fig. 1 153 x 41 grid for two-dimensional calculations.

Fig. 2 153 x 41 grid for calculating the harmonic part of the lift
coefficient.
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limits of small perturbation theory, so that the superposition
assumption can be applied.

Both the integration and transpiration quasisteady ap-
proaches were used to calculate the harmonic part of the lift
coefficient. For the calculation of the harmonic part using the
integration approach, the grid was deformed into the shape
shown in Fig. 2. For the calculation of the harmonic part with
the transpiration approach, a velocity boundary condition was
applied to the airfoil surface that was proportional to the mode
shape as defined by Eq. (13).

Unsteady calculations were performed for the airfoil pitch-
ing about its leading edge with a reduced frequency of 0.05
for Mach numbers 5 and 10. Numerical instability problems
during the unsteady Mach 15 computations precluded ob-

Table 1 Comparison of the static part of the lift
coefficient, slope for three methods

Mach
no.
5

10
15

Unsteady CFD,
k = 0.05

0.0146
0.0077

NA

Piston
theory
0.0139
0.0070
0.00463

QSCFD
0.0146
0.0081
0.0057

Table 2 Comparison of the harmonic part of the lift coefficient,
slope for three methods

Mach
no.

5
10
15

Unsteady CFD,
k = 0.05
0.0027
0.0007

NA

Piston
theory

0.0027
0.0005
0.0002

QSCFD
Integration

0.0030
0.0007
0.0003

Transpiration

0.0028
0.0007
0.0003

40.5 ft.

Fig. 3 Wing planform.

5.2ft.

[-14.25 ft.—|

taining satisfactory results. The static and harmonic parts of
the lift coefficient can be obtained by assuming that the pres-
sures take the form of Eq. (3) and that there are no higher
harmonics. Thus, the static part of the pressure distribution
is obtained at a point in the pressure time history where max-
imum pitch angle and zero angular rate occurs. Similarly, the
harmonic part of the pressure distribution is obtained at the
point where pitch angle is zero and angular rate is maximum.

Tables 1 and 2 contain results for the static and harmonic
parts of the lift coefficient, respectively. At Mach 5 both the
static and harmonic parts for all the methods were in good
agreement. At Mach 10 the unsteady and quasisteady answers
remain in good agreement, while the piston theory answer

b)
Fig. 5 Comparison of static pressure coefficient distributions com-
puted with a) QSCFD and b) unsteady CFD methods, K = 0.05.

Fig. 4 153 x 41 x 37 C-H grid for the wing.
Fig. 6 Comparison of harmonic pressure coefficient distributions
computed with a) QSCFD and b) unsteady CFD methods, k = 0.05.
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begins to differ. At Mach 15 the piston theory and quasisteady
answers are significantly different as expected.

The harmonic calculations using the two quasisteady CFD
approaches are compared in Table 2. The integration and
transpiration methods are in close agreement at all Mach
numbers examined. While both methods produce nearly the
same results, the transpiration approach is simpler to imple-
ment and will be the preferred approach throughout the ar-
ticle.

Sample Calculation in Three Dimensions
This subsection describes sample calculations for a finite

wing. Here, unsteady results will be compared with quasi-
steady CFD results. The mode shape examined was rigid wing
pitching about the 65% root chord point. The configuration
examined was a generic hypersonic wing having the same
airfoil shape as shown in Fig. 1 and the planform shown in
Fig. 3. The grid used in the calculations was the 153 x 41 x
37 C-H grid shown Fig. 4.

The unsteady calculation was performed at a reduced fre-
quency of 0.05 and the magnitude of pitching oscillation was
1 deg. Two pressure distributions were extracted from the
time history of the unsteady calculation as described in the
previous subsection. The static and harmonic pressure distri-
butions using the quasisteady and unsteady calculations are
shown in Figs. 5 and 6, respectively. Good agreement was
achieved for both the static and harmonic parts of the pres-
sures.

Flutter Analysis
This section of the article describes flutter calculations for

a hypersonic wing having eight flexible modes using the quasi-
steady CFD method. The planform and computational grid
for this wing are the same as shown in Figs. 3 and 4. Calcu-
lations were performed at Mach numbers of 5, 10, and 15.
Three results were obtained at each Mach number. Two of
the results were obtained using the quasisteady CFD method
to calculate the unsteady pressures; one with and the other
without the spanwise flux terms included. Since neither un-
steady CFD flutter results nor experimental results were avail-
able for this configuration, only piston theory results are pro-
vided for comparison.

Quasisteady CFD Aerodynamic Calculations
This subsection describes the quasisteady CFD calculations

of the unsteady pressures and GAF matrices. Comparisons
of the static and harmonic parts of the pressure coefficients
for flexible mode 4 at Mach 5 are also provided. Mode 4 was
selected because it will be shown in the next subsection to be
the dominant component of the flutter mode at Mach numbers
of 5 and 10.

As mentioned earlier, two sets of quasisteady CFD calcu-
lations were performed. One is referred to as the QSCFD 2d
results because the spanwise flux terms were not included.
The other is referred to as the QSCFD 3d results because the
spanwise flux terms were included.

To calculate the static part of the pressure, the undeformed
grid shown in Fig. 4 was used as a starting point and separate
grids were generated by deforming that grid into shapes cor-
responding to each of the eight wing mode shapes. Figure 7
shows the deflection contour for the 4th flexible mode. Each
of these eight grids was used to obtain the wing surface pres-
sure distribution per unit deformation for each mode and
Mach number combination. Using these pressure distributions
and the wing mode shapes, the static parts of the GAF ma-
trices were then calculated. These values constitute the ele-
ments of A0 in Eq. (3).

To calculate the harmonic parts of the pressure, a data file
was created for each mode that contained the desired vertical
velocity on the surface of the wing. By performing separate
steady-state calculations for each mode shape data file and
Mach number combination, the harmonic parts of the pres-
sures were calculated. These pressure distributions and the
mode shapes were then used to calculate the harmonic parts
of the GAF matrices represented by Av in Eq. (3).

Figures 8 and 9 compare the Mach 5 static and harmonic
pressures, respectively, associated with the 4th mode. Figure
8 indicates good agreement among the three results for the
static part of the pressures. Figure 9 indicates good agreement
between the harmonic pressures from the QSCFD 2d calcu-
lations and the piston theory calculations. While similar in
character, the QSCFD 3d harmonic results are somewhat dif-
ferent from the others.

Two distinct trends were observed in the pressure contour
plots as Mach number was increased from 5 to 15. First, the
QSCFD 2d and 3d pressure distributions became increasingly
similar. This trend can be seen by comparing Fig. 10 with Fig.
9. Second, the piston theory pressure distributions became
significantly different from the quasisteady CFD pressures.
The effects of these trends subsequently showed up in the
flutter analysis results described in the next subsection.

Flutter Calculation
A comparison of the flutter root locus was undertaken for

the different aerodynamic analysis methods and Mach num-
bers. The purpose of the study was to assess the effect of the
GAF matrices produced by the different aerodynamic meth-
ods on flutter. The structural parts, i.e., the vibration fre-
quencies, generalized masses, mode shapes, and structural
damping, are identical for all cases. The DYNARES part of
the ISAC5 code was used to transform the flutter equations
of motion to first-order form and to perform the flutter anal-

Deflection, inches

200 -

inches 10°

100 400200 300

x, inches
Fig. 7 Deflection contour for the fourth flexible mode.

500
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ACp

0.0085
0.0073
0.0061
0.0049
0.0036
0.0024
0.0012
0.0000

-0.0012
-0.0024
-0.0036
-0.0049
-0.0061
-0.0073
-0.0085

a) a)

b)

c)
Fig. 8 Static part of Mach 5 pressure coefficient contours associated
with mode 4: a) piston theory, b) QSCFD 2d, and c) QSCFD 3d
calculations.

b)

c)
Fig. 10 Harmonic part of the Mach 10 pressure coefficient contours
associated with mode 4: a) piston theory, b) QSCFD 2d, and c) QSCFD
3d calculations.

b)

c)
Fig. 9 Harmonic part of the Mach 5 pressure coefficient contours
associated with mode 4: a) piston theory, b) QSCFD 2d, and c) QSCFD
3d calculations.

ysis with the AQ and Al matrices of Eq. (3). Matched point
flutter analyses were performed with the altitude range being
varied from sea level to 80,000 ft.

The results for all the flutter analyses are summarized in
Table 3. In all cases the primary mechanism for aeroelastic
instability is divergence. The reason for this instability can be
attributed to the pivot point being very far aft on the wing as
seen in Fig. 3. In order to compare effects of the various
aerodynamic methods on flutter, the dynamic pressure of the
first and, where applicable, the second dynamic instability
points are shown.

Figure 11 shows the root locus results for the three aero-
dynamic calculations at Mach 5. The root locus plots generally
look very similar for all the aerodynamic methods, and a hump
mode is the cause of the flutter instability for both the QSCFD
2d and piston theory results at Mach 5. Much the same type
of behavior is noted for this mode in the QSCFD 3d results.
However, the inclusion of the spanwise flux terms into the
CFL3D calculations has altered the pressures enough to move
the hump mode into a stable region as illustrated in Fig. lie.

Except for the Mach 5 result, the QSCFD 2d and 3d results
are in good agreement for all the quantities provided in Table
3. Piston theory is shown to increasingly underpredict flutter
and divergence dynamic pressure as compared with the quasi-
steady CFD calculations as Mach number increases.

The piston theory flutter frequency is in good agreement
with the QSCFD 2d frequency at Mach 5 indicating similar
flutter mechanisms. At Mach 10 the frequencies of the first
and second instability are consistent, indicating similar flutter
mechanisms for both the quasisteady CFD and piston theory
calculations. At Mach 15 the piston and quasisteady CFD
calculations each predict different primary flutter mecha-
nisms. This is attributed to the fact that piston theory pre-
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Table 3 Comparison of flutter results

Mach number

Aerodynamic
method
Piston theory

QSCFD 2d

QSCFD 3d

First
Second

First
Second

First
Second

psi
129

169

00

5

r/s

78

80

——

psi
50

50

59

psi
184
537
331
578
330
586

10

r/s
78

186
81

212
82

208

psi
66

109

114

psi
250
634
982

981

15

r/s
72

181
224

224

psi
81

271

267

f, dynamic pressure at flutter. ba>f, radian frequency for flutter. cqd, dynamic pressure for divergence.

co(rad/sec)
1300

-20
a)

-10 0 10
a(1/sec)

a>(rad/sec)
1300

b)
-10 0 10

a(1/sec)

a>(rad/sec)
1300

200
no flutter

100

-20 -10 0 10

C) a(1/sec)
20

Fig. 11 Mach 5 root locus results: a) piston theory, b) QSCFD 2d,
and c) QSCFD 3d.

dieted harmonic GAP elements significantly larger than those
predicted by the quasisteady CFD calculations.

If the quasisteady method can be considered the more ac-
curate method for computing the aerodynamic forces, then
from both the standpoint of the root locus plots and the flutter
and divergence dynamic pressures, piston theory shows lim-
ited accuracy with large conservatism at elevated Mach num-
bers. However, it remains to be seen whether the same con-
clusion can be drawn if experimental data were to be available.

Concluding Remarks
It is extremely expensive to perform time-accurate unsteady

CFD calculations required for a flutter analysis. This article
presents an efficient approach for obtaining supersonic and
hypersonic aerodynamics necessary for performing flutter
analyses for cases where the reduced frequency is small. The
method requires only steady CFD calculations be performed
where vibratory modes have been used to modify the bound-
ary conditions. Two steady CFD solutions are required per
vibratory mode, one for the static part and one for the har-
monic part of the pressure distribution. These pressures can
be used to calculate the generalized aerodynamic forces for
use in conventional flutter analyses.

The quasisteady CFD method was demonstrated with the
CFL3D code to solve the Euler equations for two- and three-
dimensional configurations at supersonic and hypersonic Mach
numbers. Comparisons of quasisteady and unsteady pressure
distributions and generalized forces indicate that the quasi-
steady results were very accurate for the configurations stud-
ied. The method was also applied to flutter calculations of a
NASP-type wing where piston theory results were provided
for comparison. The aerodynamic and flutter results indicate
that piston theory is relatively accurate in the vicinity of Mach
5, but has increasingly poor accuracy at mach 10 and beyond.
In addition, for the flutter calculations two types of quasi-
steady calculations were made, one with span wise effects in-
cluded and one neglecting them. As would be expected, these
pressure distributions and flutter results showed increasing
agreement with increasing Mach number.
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